Telegram Group & Telegram Channel
Forwarded from Machinelearning
ML-комьюнити о крупнейших запусках LLM начала 2025 года:

✔️ DeepSeek — революция или переоцененный запуск?

Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.

✔️ Grok 3 — Маск не дотянул

ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.

✔️ GPT-4.5 — не оправдал ожиданий экспертов

Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.

✔️ YandexGPT 5 — что в России?

Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.

✔️ Gemini 2.0 Flash — лучшее соотношение цена/качество

Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.

✔️ Claude 3.7 — достойный шаг вперёд при умеренных затратах

Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.

@ai_machinelearning_big_data

#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1649
Create:
Last Update:

ML-комьюнити о крупнейших запусках LLM начала 2025 года:

✔️ DeepSeek — революция или переоцененный запуск?

Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.

✔️ Grok 3 — Маск не дотянул

ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.

✔️ GPT-4.5 — не оправдал ожиданий экспертов

Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.

✔️ YandexGPT 5 — что в России?

Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.

✔️ Gemini 2.0 Flash — лучшее соотношение цена/качество

Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.

✔️ Claude 3.7 — достойный шаг вперёд при умеренных затратах

Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.

@ai_machinelearning_big_data

#AI #ML #LLM

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1649

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Machine learning Interview from ua


Telegram Machine learning Interview
FROM USA